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Abstract— In this work we propose a new paradigm for learning coordination in multi-agent systems. This
approach is based on social interaction of people, specially in the fact that people communicate to each other
what they think about their actions and this opinion has some influence in the behavior of each other. We
propose a model in which multi-agents learn to coordinate their actions giving opinions about the actions of
other agents and also being influenced with opinions of other agents about their actions. We use the proposed
paradigm to develop a modified version of the Q-learning algorithm. The new algorithm is tested and compared
with independent learning (IL) and joint action learning (JAL) in a grid problem with two agents learning to
coordinate. Our approach shows to have more probability to converge to an optimal equilibrium than IL and
JAL Q-learning algorithms, specially when exploration increases. Also, a nice property of our algorithm is that
it does not need to make an entire model of all joint actions like JAL algorithms.
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1 Introduction

As Kok and Vlassis postulate, a multi-agent sys-
tem (MAS) consists of a group of agents that
can potentially interact with each other (Kok and
Vlassis, 2004). However, this interaction has to be
coordinated. Coordination, collaboration and co-
operation are three terms used without distinction
when working with multi-agent systems. In this
paper, we adopt a definition proposed by Noreils
(Noreils, 1993) in which cooperation occurs when
several agents (or robots) are gathered together so
as to perform a global task. Coordination and col-
laboration are two forms of cooperation (Botelho
and Alami, 2000). Coordination occurs when an
entity coordinates its activity with another, or it
synchronizes its action with respect to the other
entity, by exchanging information, signals, etc.
And, collaboration occurs when agents decompose
the global task in subtasks and each subtask is
performed by a specific agent.

The focus of this work is coordination, thus,
the problem is how to make agents perform their
actions according to the other agents actions in
order to achieve a Nash equilibrium (Kononen,
2004).

If N is the number of players, the strategies
σ∗1 , . . . , σ∗N constitute a Nash equilibrium solution
of the game if the following inequality holds for all
σi ∈ Σi and for all i:

ri(σ∗1 , . . . , σ∗i−1, σi, σ
∗
i+1, . . . , σ

∗
N ) ≤ ri(σ∗1 , . . . , σ∗N )

(1)
The idea of the Nash equilibrium solution is that
the strategy chosen by each player is the best re-
sponse to his opponents’ play and therefore there
is no need for deviation from this equilibrium
point for any player alone (Kononen, 2004).

Reinforcement learning has been widely ap-

plied to the coordination problem. The ap-
proaches proposed until now can be classified into
two paradigms: independent learning and joint ac-
tion learning. Independent learning agents learn
values of individual actions considering only a
global reward received by the agent. On the other
hand, joint actions learning agents learn values of
joint actions considering a global reward and a
model of the other agents behavior.

Our approach is based in the idea that an
agent learns only the values of their own actions,
but it considers the global reward and the in-
fluence that other agents have over the learning
agent. This approach does not fit into none of the
both classifications explained previously, thus, we
are proposing a new paradigm that we call ”Influ-
ence Valued Reinforcement Learning”.

The two paradigms for coordination in multi-
agent systems are better explained in section 2.
Then, our proposed approach is introduced in sec-
tion 3 and its experimental results in comparison
with the other approaches are shown in section 4.
Finally, its contribution and applications are dis-
cussed in section 5.

2 Coordination in Multi-Agent Systems

The problem of coordination in multi-agent sys-
tems has had increasingly attention by the arti-
ficial intelligence community. It is not difficult
to find solutions based on reinforcement learning
(Kok and Vlassis, 2004; Kononen, 2004).

Traditional solutions based on reinforcement
learning can be classified into independent learn-
ing and joint action learning. Both paradigms in-
tend to achieve the Nash equilibrium. However,
in certain games there exist several equilibrium
points and this became a challenge for reinforce-



ment learning researches. This occurs because
when a problem has several equilibrium points the
concept of optimal equilibrium appears. When all
agents in the system are evolutionary, it is difficult
to achieve an optimal equilibrium because of the
uncertainty of actions of other agents.

2.1 Independent Learning

The basic idea of independent learning (IL) is that
agents learn independently as if other agents does
not exist. Thus, an agent only matters with the re-
ward obtained from the environment and not with
the actions that may be performed by other agents
nor with the relation between its actions and other
agents actions. In this sense, traditional reinforce-
ment learning algorithms can be applied without
any modification. Claus and Boutilier (Claus and
Boutilier, 1998) shows empirically that this kind
of solution converges to a Nash equilibrium, but,
depending on the structure of the problem to be
solved, it can not converge to the optimal Nash
equilibrium. Because independent learning does
not consider information about other agents, in
certain problems it could be inefficient when try-
ing to converge to an optimal equilibrium.

In this work, we are interested in multi state
problems with two agents, thus, we select to use
learning from delayed rewards algorithms. In the
case of IL we use the Q-Learning (IQ-Learning)
algorithm defined by the following equation:

Q(st, at) ← Q(st, at)+

α(rt+1 + γ max
a

Q(st+1, a)−Q(st, at)) (2)

where Q(st, at) is the value of the action at in
the state st, α is the learning rate (0 ≤ α ≤ 1),
γ is the discount rate (0 ≤ γ ≤ 1), st+1 is the
resulting state of executing the action at and r is
the instantaneous reward obtained by executing
the action at.

When using independent learning in multi-
agent systems, one of the main issues is the state
representation. That is, to decide if the state
in the reinforcement learning algorithm represents
the individual state of the agent or the global state
of all agents in the system. In this work we ex-
plore both possibilities although the most used one
is the representation of the global state of the sys-
tem.

2.2 Joint Action Learning

The basic idea of joint action learning (JAL) is
that agents do not calculate the value of their ac-
tions. Instead of that, they calculate the values of
their actions when combined with actions of other
agents. Each combination is known as a joint ac-
tion. Also, the agent decide the action to per-
form based on the actions that other agents will

probably execute. In this sense, each agent has
to construct a model of the behavior of the other
agents.

Because joint action learners does not have an
entire model of joint actions, it becomes difficult to
implement this approach when number of agents,
states and/or actions increase.

For the joint actions learning paradigm, we
use an algorithm based on Q-Learning (JAQ-
Learning).

In the JAQ-Learning algorithm the value of a
joint action (a, b) of an agent i is modified by the
equation 3.

Qi(st, at, bt) ← Qi(st, at, bt)+

α(rt+1 + γ max
a,b

Qi(st+1, a, b)−Qi(st, at, bt)) (3)

where at is the action performed by the agent i
at time t, bt is the action performed by the other
agent, Qi(st, at, bt) is the value of the joint action
(at, bt) for agent i in the state st, rt+1 is the re-
ward obtained by agent i as it executes action at

and as the other agent executes action bt, α is the
learning rate (0 ≤ α ≤ 1) and γ is the discount
rate (0 ≤ γ ≤ 1)

However, an agent has to decide between its
actions and not between joint actions. For this
decision, it uses the expected value of its actions
that include information about the joint actions
and current beliefs about other agent (Equation
4).

EV (st, at) ←
∑

b∈B

Q(b ∪ at) ∗ Prt(b) (4)

where at is the action performed by the agent,
EV (st, at) is the expected value of action at in
state st, b is an action of the other agent, B is the
set of actions of the other agent and Prt(b) is the
probability that other agent performs action b in
state st.

2.3 Exploration Strategy

An important decision to take when working with
any kind of reinforcement learning algorithm is the
action selection strategy. The selected strategy
has to guarantee both exploration and exploita-
tion. In this sense, the best one is the softmax
strategy.

A popular softmax strategy is the one based
on Boltzman equation:

Pr(a) =
eQ(a)/T

∑
a′ e

Q(a′)/T
(5)

where T is the temperature parameter that can be
decreased over time so that the exploitation prob-
ability increases (and can be done in a such way
that convergence is assured)(Singh et al., 2000).



3 Influence Valued Reinforcement
Learning

As said, our paradigm is based on social interac-
tion of people. When two persons interact, they
communicate to each other what they think about
their actions. Thus, if a person A does not like an
action performed by another person B, then A
may protest, gently, against B. If the person B
continues doing the same action, then A gets an-
gry and angrily protest against B. Note that the
protesting force is proportional to the number of
times the action is repeated. At some time, person
A may eventually fight against B.

On the other hand, if a person A likes the
action performed by another person B, then A
praises B. Also if the performed action is very
good, then person A praises B a lot. Note that if
B continues to perform this action, then A will be
accustomed and with time A will stops praising
B. This means that the praising force is inversely
proportional to the number of times the action is
repeated.

We also note that protests and praises of other
people can influence the behavior of a person.
When other people protests against us, we try to
avoid actions that caused these protests and when
the opposite occurs (people praises us), we try to
repeat the same actions.

Inspired in the fact explained above, we pro-
pose a new paradigm for machine learning denom-
inated ”Influence Valued Reinforcement Learn-
ing”. In our approach, agents calculate the value
of their individual actions based on a global re-
ward (reward given by the environment) and on a
value called influence value.

The influence value for an agent is calculated
by the product of an influence rate (0 ≤ β ≤ 1)
and the opinion of other agents have about agent’s
action.

The influence rate (β) tells if the agent is
or not influenced by the opinion of other agents.
Opinion is the value that other agents have about
the action of an agent. If the instantaneous re-
ward that the agent receives at a certain time plus
the value of the new state that the agent reaches
is greater than the value of its own action, the
opinion about the actions performed by the other
agents is positive and inversely proportional to the
times that the other agents performed the actions.
If the reward that the agent receives plus the value
of the new state is lesser than the value of its
own action, the opinion about the actions per-
formed by other agents is negative and directly
proportional to the times that the other agents
performed the actions.

A1 A2

10/k

5/0

Figure 1: Grid World game for testing coordina-
tion between two agents.

3.1 Influence Value Q-Learning

The IVQ-learning algorithm is a Q-Learning based
algorithm developed using the Influence Valued
Reinforcement Learning paradigm. In this sense
the action value for the delayed reward in the two
agents problem is modified using the Equation 6.

Q(st, at) ← Q(st, at) + α(rt+1+

γ max
a

Q(st+1, a)−Q(st, at) + β(OpB)) (6)

where Q(st, at) is the value of action at done by
agent A, α is the learning rate (0 ≤ α ≤ 1), γ is
the discount rate (0 ≤ γ ≤ 1), β is the influence
rate (0 ≤ β ≤ 1), thus, β is the influence of the
opinion of the other agent (B) over the value of
action at and OpB is the opinion that the other
agent has about action at in the state st.

The opinion of an agent about an action per-
formed by another agent is calculated by:

OpB =





(rb + max
b

Q(st+1, b)−Q(st, bt)) ∗ Pe(st, at)

if (rb + max
b

Q(st+1, b)−Q(st, bt)) < 0

(rb + max
b

Q(st+1, b)−Q(st, bt))/Pe(st, at)

if (rb + max
b

Q(st+1, b)−Q(st, bt)) > 0

0
in other case

where rb is the instantaneous reward obtained by
the agent B, Q(st, bt) is the value of the action bt

of agent B in the state st and Pe(st, at) is the per-
centage of times that the agent A performs action
at in state st.

We note that independent learners have to
store only the values of their individual actions;
joint action learners have to store the values of
joint actions and the probability that other agents
execute their actions. The influence valued learn-
ers have to store the values of their individual ac-
tions and the percentage that other agents execute
their actions. Thus, the number of stored values
increase as the number of actions and/or the num-
ber of agents increase. In this sense, independent
learning and influence valued learning have an ad-
vantage over joint action learning.



4 Experimental Results

In order to test our approach in comparison with
the existing ones, we create a game we called the
grid world game where the goal is coordination
between two agents. That is, in this game (fig-
ure 1) both agents have to coordinate their ac-
tions in order to obtain positive rewards. Lack of
coordination causes penalties for both.

The game starts with the agent one (A1) in
position (5, 1) and agent two (A2) in position
(5, 5). The idea is for them to reach positions
(1, 3) and (3, 3) in order to finish the game. If
they reach these final positions at the same time,
they obtain a positive reward. When they reach
the position (1, 3) at the same time they obtain 5
points and when they reach the position (3, 3) at
the same time, they obtain 10 points. However, if
only one of them reaches the position (3, 3) they
are punished with a penalty value k. In the other
case, if only one of them reaches position (1, 3)
they are not punished.

The game ends when at least one of the agents
reaches the positions (1, 3) and (3, 3) or, also, the
game ends if the action of at least one of them
leaves it out of the grid. The possible actions are
four in the game: go right, go left, go up and go
down. For example, if the position of an agent
is at the cel (2, 2) then the action go right brings
the agent to the position (2, 3). The action go
left brings it to the position (2, 1), go up brings it
to position (1, 2), and finally the action go down
leads the agent to position (3, 2).

This game has several Nash equilibrium so-
lutions, the policies that lead agents to obtain 5
points and 10 points, however, optimal Nash equi-
librium solutions are those that lead agents to ob-
tain 10 points in four steps.

We use the same game to test four imple-
mented versions of the Q-Learning algorithm. The
first two implemented algorithms are versions of
the independent learning paradigm, the third one
is a version of the joint actions learning paradigm
and the last one is our paradigm, the influence
valued learning.

The first algorithm (Independent Learning A)
considers that each agent only learns the values of
its individual actions without considering the ac-
tions performed by the other agents. The state in
this version of the algorithm is the position of the
agent, thus the state space does not consider the
position of the other agents. The second version of
this algorithm (Independent Learning B) also con-
siders the individual actions, but, the state space
in this version of the algorithm is the position of
both agents. The third one (Joint Actions Learn-
ing) also considers that the state is formed by the
positions of both agents and learns the joint ac-
tions for each state. The last one (Influence Val-
ued Learning), that we propose, also considers the
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Figure 2: Comparison of Algorithms Performance
with α = 1, λ = 0.1, β = 0.1 and T = 0.99t

same kind of state plus the influence values given
by other agents.

In the tests, each learning algorithm is ex-
ecuted three times for each value of penalty k
(0 ≤ k ≤ 15) and using five different decreas-
ing rates of temperature T for the softmax pol-
icy (0.99t, 0.995t, 0.999t, 0.9995t, 0.9999t). Each
resulting policy (960 policies, 3 for each algorithm
with penalty k and a certain decreasing rate of T )
was tested 1000 of times.

Different penalties k were chosen for testing
the capability of each algorithm to reach the opti-
mal equilibrium (in our case the position (3, 3), at
the same time, and in four steps). Different val-
ues for the decreasing rate of temperature T was
chosen in order to test the influence of exploration
× exploitation over each algorithm while trying to
reach the optimal equilibrium.

The statistical mean of the percentage of
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Figure 3: Probability of Reaching (3, 3) Position
at the Same Time with α = 1, λ = 0.1, β = 0.1

times that the position (3, 3) is reached at the
same time by using each kind of algorithm with
a certain penalty k and temperature decreasing
rate is obtained. Figure 2 shows the probability
of reaching the position (3, 3) with α = 1, λ = 0.1,
β = 0.1 and T = 0.99t using the four algorithms.
In this figure, we can see that the independent
learning algorithm that considers the state as be-
ing only the individual positioning of the agent
does not have conditions to reach the position
(3, 3) but, as showed in figure 2, it can reach the
position (1, 3). This occurs because (1, 3) position
does not have penalties.

Also it was observed that in this problem the
joint action learning algorithm has the smaller
probability of convergence to the (3, 3) position.
This behavior is repeated for the other tempera-
ture decreasing rates (figures 3 to 4).

From the experiments, we note that the Inde-
pendent Learning B and our approach have had
almost the same behavior. But, when the ex-
ploration rate increases, the probability of con-
vergence to the optimal equilibrium decreases for
the Independent Learners and increase for our
paradigm. Also, it could be observed that at some
times the Joint Actions Learners algorithm can
not converge to any equilibrium and that at an-
other times it converges to a policy in which agents
can not finish the game.

As shown in figure 4, when exploration rate
increases the Independent Learning Algorithm
looses the capability of convergence to positions
(1, 3) and (3, 3).

As shown in figures 2 and 4 as more ex-
ploratory the action selection policy is, smaller
is the size of the path for reaching (3, 3) posi-
tion. When exploration increases, the probability
of the algorithms to reach the optimal equilibrium
increases too. It is important to note that our
paradigm has the best probability of convergence
to the optimal equilibrium. One can conclude that
by joining the probability of convergence to the
position (3, 3) and the mean size of the path for
reaching this position.

5 Conclusions

In this paper, we propose a new paradigm for
learning coordination in multi-agent systems in-
spired on the simple fact that people in a society
interact to each other by exchanging their opinion
about their acts. The proposed IVQ-Learning al-
gorithm, developed using this approach has shown
to be better than the algorithms based on the
models Independent Learning and Joint Action
Learning.

Experiments show that our approach has the
best probability of convergence to the optimal
equilibrium (to reach (3, 3) position in four steps).
It can reach the optimal equilibrium with the
best probability when exploration increases (T =
0.9999t). This can be concluded by observing
that, at this point, the algorithms find paths of
size near the optimal (4), but our paradigm is the
one that has the best probability to reach (3, 3)
position.

We remark that the results obtained are
based on the simplest implementation forms of
the paradigms. As there exist ways to improve
the behavior of the other paradigms (Kapetanakis
and Kudenko, 2002; Suematsu and Hayashi, 2002;
Tumer et al., 2002; Chalkiadakis and Boutilier,
2003; Sen et al., 2003; Kononen, 2004), it is also
possible to find similar methodologies to improve
the performance of our new paradigm, thus being
it still a better choice.
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Figure 4: Comparison of Algorithms Performance
with α = 1, λ = 0.1, β = 0.1 and T = 0.9999t
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